1. Questions, Correct Options, and Reasons

(i) The standard form of \(5.2 \times 10^6\) is:

(a) 52,000

(b) 520,000

(c) 5,200,000

(d) 52,000,000

Correct Answer: (c) 5,200,000

Reason: Multiplying \(5.2\) by \(10^6\) gives \(5,200,000\).

(ii) Scientific notation of \(0.00034\) is:

(a) \(3.4 \times 10^3\)

(b) \(3.4 \times 10^{-4}\)

(c) \(3.4 \times 10^4\)

(d) \(3.4 \times 10^{-3}\)

Correct Answer: (b) \(3.4 \times 10^{-4}\)

Reason: Moving the decimal 4 places to the right gives \(3.4 \times 10^{-4}\).

(iii) The base of common logarithm is:

(a) 2

(b) 10

(c) 5

(d) \(e\)

Correct Answer: (b) 10

Reason: The common logarithm (log) is based on \(10\).

(iv) \(\log_2 2^3 = \_\_\_\_\_\_\_\_\_\_\_\_\).

(a) 1

(b) 2

(c) 5

(d) 3

Correct Answer: (d) 3

Reason: \(\log_2 2^3 = 3\), as \(2^3 = 8\).

(v) \(\log 100 = \_\_\_\_\_\_\_\_\_\_\_\_\).

(a) 2

(b) 3

(c) 10

(d) 1

Correct Answer: (a) 2

Reason: \(\log 100 = \log 10^2 = 2\).

(vi) If \(\log 2 = 0.3010\), then \(\log 200\) is:

(a) 1.3010

(b) 0.6010

(c) 2.3010

(d) 2.6010

Correct Answer: (c) 2.3010

Reason: \(\log 200 = \log (2 \times 10^2) = \log 2 + \log 10^2 = 0.3010 + 2 = 2.3010\).

(vii) \(\log(0) = \_\_\_\_\_\_\_\_\_\_\_\_\).

(a) Positive

(b) Negative

(c) Zero

(d) Undefined

Correct Answer: (d) Undefined

Reason: Logarithm of \(0\) is undefined because no power of a base can equal \(0\).

(viii) \(\log 10,000 = \_\_\_\_\_\_\_\_\_\_\_\_\).

(a) 2

(b) 3

(c) 4

(d) 5

Correct Answer: (c) 4

Reason: \(\log 10,000 = \log(10^4) = 4\).

(ix) \(\log 5 + \log 3 = \_\_\_\_\_\_\_\_\_\_\_\_\).

(a) \(\log 0\)

(b) \(\log 2\)

(c) \(\log \left(\frac{5}{3}\right)\)

(d) \(\log 15\)

Correct Answer: (d) \(\log 15\)

Reason: \(\log 5 + \log 3 = \log(5 \times 3) = \log 15\).

(x) \(3^4 = 81\) in logarithmic form is:

(a) \(\log_3 4 = 81\)

(b) \(\log_4 3 = 81\)

(c) \(\log_3 81 = 4\)

(d) \(\log_4 81 = 3\)

Correct Answer: (c) \(\log_3 81 = 4\)

Reason: The logarithmic form of \(3^4 = 81\) is \(\log_3 81 = 4\).

2. Express the following numbers in scientific notation:

(i) \(0.000567\)

\[0.000567 = 5.67 \times 10^{-4}\]

(ii) \(734\)

\[734 = 7.34 \times 10^2\]

(iii) \(0.33 \times 10^3\)

\[0.33 \times 10^3 = 3.3 \times 10^2\]

3. Express the following numbers in ordinary notation:

(i) \(2.6 \times 10^3\)

\[2.6 \times 10^3 = 2600\]

(ii) \(8.794 \times 10^{-4}\)

\[8.794 \times 10^{-4} = 0.0008794\]

(iii) \(6 \times 10^{-6}\)

\[6 \times 10^{-6} = 0.000006\]

4. Express each of the following in logarithmic form:

(i) \(3^7 = 2187\)

\[\log_3 2187 = 7\]

(ii) \(a^b = c\)

\[\log_a c = b\]

(iii) \((12)^2 = 144\)

\[\log_{12} 144 = 2\]

5. Express each of the following in exponential form:

(i) \(\log_4 8 = x\)

\[4^x = 8\]

(ii) \(\log_9 729 = 3\)

\[9^3 = 729\]

(iii) \(\log_4 1024 = 5\)

\[4^5 = 1024\]

6. Find value of \(x\) in the following:

(i) \(\log_9 x = 0.5\)

\[x = 9^{0.5} = 3\]

(ii) \(\left(\frac{1}{9}\right)^{3x} = 27\)

\[\frac{1}{9} = 3^{-2}, \, 27 = 3^3\]

\[(3^{-2})^{3x} = 3^3\]

\[3^{-6x} = 3^3\]

\[-6x = 3 \]

\[ x = -\frac{1}{2}\]

(iii) \(\left(\frac{1}{32}\right)^{2x} = 64\)

\[\frac{1}{32} = 2^{-5}, \, 64 = 2^6\]

\[(2^{-5})^{2x} = 2^6\]

\[2^{-10x} = 2^6\]

\[-10x = 6 \]

\[ x = -\frac{3}{5}\]

7. Write the following as a single logarithm:

(i) \(7 \log x – 3 \log y^2\)

\[7 \log x – 3 \log y^2 = \log(x^7) – \log(y^6)\]

\[= \log\left(\frac{x^7}{y^6}\right)\]

(ii) \(3 \log 4 – \log 32\)

\[3 \log 4 – \log 32 = \log(4^3) – \log(32)\]

\[= \log\left(\frac{4^3}{32}\right) = \log\left(\frac{64}{32}\right) = \log(2)\]

(iii) \(\frac{1}{3}(\log_5 8 + \log_5 27) – \log_5 3\)

\[\frac{1}{3}(\log_5 8 + \log_5 27) – \log_5 3 = \frac{1}{3} \log_5(8 \cdot 27) – \log_5 3\]

\[= \frac{1}{3} \log_5(216) – \log_5 3 = \log_5(216^{1/3}) – \log_5 3\]

\[= \log_5(6) – \log_5(3) = \log_5\left(\frac{6}{3}\right) = \log_5(2)\]

8. Expand the following using laws of logarithms:

(i) \(\log(x y z^6)\)

\[\log(x y z^6) = \log(x) + \log(y) + 6\log(z)\]

(ii) \(\log_3 \sqrt[6]{m^5 n^3}\)

\[\log_3 \sqrt[6]{m^5 n^3} = \frac{1}{6} \log_3(m^5 n^3)\]

\[= \frac{1}{6} (\log_3(m^5) + \log_3(n^3))\]

\[= \frac{1}{6} (5 \log_3 m + 3 \log_3 n)\]

\[= \frac{5}{6} \log_3 m + \frac{3}{6} \log_3 n\]

\[= \frac{5}{6} \log_3 m + \frac{1}{2} \log_3 n\]

(iii) \(\log\sqrt{8x^3}\)

\[\log\sqrt{8x^3} = \frac{1}{2} \log(8x^3)\]

\[= \frac{1}{2} (\log(8) + \log(x^3))\]

\[= \frac{1}{2} (\log(8) + 3 \log(x))\]

\[= \frac{\log(8)}{2} + \frac{3}{2} \log(x)\]

9. Find the values of the following with the help of logarithm table:

(i) \(\sqrt[3]{68.24}\)

\[\sqrt[3]{68.24} = (68.24)^{1/3}\]

\[\log(68.24) = 1.8330, \, \frac{1.8330}{3} = 0.6110\]

\[10^{0.6110} = 4.1\]

(ii) \(319.8 \times 3.543\)

\[\log(319.8) = 2.5049, \, \log(3.543) = 0.5497\]

\[\log(\text{Result}) = 2.5049 + 0.5497 = 3.0546\]

\[10^{3.0546} = 1133\]

(iii) \(\frac{36.12 \times 750.9}{113.2 \times 9.98}\)

\[\log(36.12) = 1.5586, \, \log(750.9) = 2.8769\]

\[\log(113.2) = 2.0538, \, \log(9.98) = 0.9996\]

\[\log(\text{Result}) = (1.5586 + 2.8769) – (2.0538 + 0.9996)\]

\[= 4.4355 – 3.0534 = 1.3821\]

\[10^{1.3821} = 24.1\]

10. Population Growth

Given:

\[p(t) = 22(1.025)^t, \, p(t) = 35\]

\[35 = 22(1.025)^t\]

\[\frac{35}{22} = (1.025)^t\]

\[\log(1.5909) = t \cdot \log(1.025)\]

\[\log(1.5909) = 0.2014, \, \log(1.025) = 0.0107\]

\[t = \frac{0.2014}{0.0107} = 18.82\]

\[\text{Year} = 2016 + 19 = 2035\]

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *