1. State the domain and range of each relation.

For \(A = \{1, 2, 3, 4\}\), find \(A \times A\) first, then solve other parts.

Find \(A \times A\)

\[A \times A = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (3, 4), (4, 1), (4, 2), (4, 3), (4, 4)\}\]

(i) Relation \( \{(x, y) \, | \, y = x\} \)

\[R_1 = \{(1, 1), (2, 2), (3, 3), (4, 4)\}\]

Domain:

\[\{1, 2, 3, 4\}\]

Range:

\[\{1, 2, 3, 4\}\]

(ii) Relation \( \{(x, y) \, | \, y + x = 5\} \)

\[R_2 = \{(1, 4), (2, 3), (3, 2), (4, 1)\}\]

Domain:

\[\{1, 2, 3, 4\}\]

Range:

\[\{1, 2, 3, 4\}\]

(iii) Relation \( \{(x, y) \, | \, x + y < 5\} \)

\[R_3 = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (4, 1)\}\]

Domain:

\[\{1, 2, 3, 4\}\]

Range:

\[\{1, 2, 3, 4\}\]

(iv) Relation \( \{(x, y) \, | \, x + y > 5\} \)

\[R_4 = \{(2, 4), (3, 3), (3, 4), (4, 2), (4, 3), (4, 4)\}\]

Domain:

\[\{2, 3, 4\}\]

Range:

\[\{2, 3, 4\}\]

2. Which of the following diagrams represent functions and of which type?

Fig (1):

Not a function. Each element in the domain is not mapped to exactly one element in the range.

Fig (2):

Function. It is one-to-one.

Fig (3):

Function. It is many-to-one.

Fig (4):

Not a function. An element in the domain is mapped to multiple elements in the range.

3. If \(g(x) = 3x + 2\) and \(h(x) = x^2 + 1\), then find:

(i) \(g(0)\)

\[g(0) = 3(0) + 2 = 2\]

(ii) \(g(-3)\)

\[g(-3) = 3(-3) + 2 = -9 + 2 = -7\]

(iii) \(g\left(\frac{2}{3}\right)\)

\[g\left(\frac{2}{3}\right) = 3\left(\frac{2}{3}\right) + 2 = 2 + 2 = 4\]

(iv) \(h(1)\)

\[h(1) = (1)^2 + 1 = 1 + 1 = 2\]

(v) \(h(-4)\)

\[h(-4) = (-4)^2 + 1 = 16 + 1 = 17\]

(vi) \(h\left(-\frac{1}{2}\right)\)

\[h\left(-\frac{1}{2}\right) = \left(-\frac{1}{2}\right)^2 + 1 = \frac{1}{4} + 1 = \frac{5}{4}\]

4. Given \(f(x) = ax + b + 1\), where \(a\) and \(b\) are constant numbers, \(f(3) = 8\) and \(f(6) = 14\). Find the values of \(a\) and \(b\).

\[f(x) = ax + b + 1\]

Substitute \(f(3) = 8\):

\[8 = 3a + b + 1\]

\[3a + b = 7 \quad \text{(1)}\]

Substitute \(f(6) = 14\):

\[14 = 6a + b + 1\]

\[6a + b = 13 \quad \text{(2)}\]

Subtract (1) from (2):

\[(6a + b) – (3a + b) = 13 – 7\]

\[3a = 6 \]

\[ a = 2\]

Substitute \(a = 2\) in (1):

\[3(2) + b = 7\]

\[6 + b = 7 \]

\[ b = 1\]

\[a = 2, \, b = 1\]

5. Given \(g(x) = ax + b + 5\), where \(a\) and \(b\) are constant numbers, \(g(-1) = 0\) and \(g(2) = 10\). Find the values of \(a\) and \(b\).

\[g(x) = ax + b + 5\]

Substitute \(g(-1) = 0\):

\[0 = -a + b + 5\]

\[-a + b = -5 \quad \text{(1)}\]

Substitute \(g(2) = 10\):

\[10 = 2a + b + 5\]

\[2a + b = 5 \quad \text{(2)}\]

Subtract (1) from (2):

\[(2a + b) – (-a + b) = 5 – (-5)\]

\[3a = 10 \]

\[ a = \frac{10}{3}\]

Substitute \(a = \frac{10}{3}\) in (1):

\[-\frac{10}{3} + b = -5\]

\[b = -5 + \frac{10}{3} = -\frac{15}{3} + \frac{10}{3} = -\frac{5}{3}\]

\[a = \frac{10}{3}, \, b = -\frac{5}{3}\]

6. Consider the function \(f(x) = 5x + 1\). If \(f(x) = 32\), find the \(x\) value.

\[f(x) = 5x + 1\]

Substitute \(f(x) = 32\):

\[32 = 5x + 1\]

\[5x = 31 \]

 \[ = \frac{31}{5}\]

\[x = \frac{31}{5}\]

7. Consider the function \(f(x) = cx^2 + d\), where \(c\) and \(d\) are constant numbers. If \(f(1) = 6\) and \(f(-2) = 10\), find the values of \(c\) and \(d\).

\[f(x) = cx^2 + d\]

Substitute \(f(1) = 6\):

\[6 = c(1)^2 + d\]

\[c + d = 6 \quad \text{(1)}\]

Substitute \(f(-2) = 10\):

\[10 = c(-2)^2 + d\]

\[4c + d = 10 \quad \text{(2)}\]

Subtract (1) from (2):

\[(4c + d) – (c + d) = 10 – 6\]

\[3c = 4 \]

 \[ c = \frac{4}{3}\]

Substitute \(c = \frac{4}{3}\) in (1):

\[\frac{4}{3} + d = 6\]

\[d = 6 – \frac{4}{3} = \frac{18}{3} – \frac{4}{3} = \frac{14}{3}\]

\[c = \frac{4}{3}, \, d = \frac{14}{3}\]

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *