1. Express each of the following in logarithmic form:

(i) \( 10^3 = 1000 \)

\[\log_{10} 1000 = 3\]

(ii) \( 2^8 = 256 \)

\[\log_{2} 256 = 8\]

(iii) \( 3^{-3} = \frac{1}{27} \)

\[\log_{3} \frac{1}{27} = -3\]

(iv) \( 20^2 = 400 \)

\[\log_{20} 400 = 2\]

(v) \( 16^{-\frac{1}{4}} = \frac{1}{2} \)

\[\log_{16} \frac{1}{2} = -\frac{1}{4}\]

(vi) \( 11^2 = 121 \)

\[\log_{11} 121 = 2\]

(vii) \( p = q^r \)

\[\log_{q} p = r\]

(viii) \( (32)^{\frac{-1}{5}} = \frac{1}{2} \)

\[\log_{32} \frac{1}{2} = \frac{-1}{5}\]

2. Express each of the following in exponential form:

(i) \( \log_{5} 125 = 3 \)

\[5^3 = 125\]

(ii) \( \log_{2} 16 = 4 \)

\[2^4 = 16\]

(iii) \( \log_{23} 1 = 0 \)

\[23^0 = 1\]

(iv) \( \log_{5} 5 = 1 \)

\[5^1 = 5\]

(v) \( \log_{2} \frac{1}{8} = -3 \)

\[2^{-3} = \frac{1}{8}\]

(vi) \( \frac{1}{2} = \log_{9} 3 \)

\[9^{\frac{1}{2}} = 3\]

(vii) \( 5 = \log_{10} 100000 \)

\[10^5 = 100000\]

(viii) \( \log_{4} \frac{1}{16} = -2 \)

\[4^{-2} = \frac{1}{16}\]

3. Find the value of \( x \) in each of the following:

(i) \( \log_{x} 64 = 3 \)

\[x^3 = 64\]

\[x = 4\]

(ii) \( \log_{5} 1 = x \)

\[5^x = 1\]

\[x = 0\]

(iii) \( \log_{x} 8 = 1 \)

\[x^1 = 8\]

\[x = 8\]

(iv) \( \log_{10} x = -3 \)

\[10^{-3} = x\]

\[x = 0.001\]

(v) \( \log_{4} x = \frac{3}{2} \)

\[4^{\frac{3}{2}} = x\]

\[x = 8\]

(vi) \( \log_{2} 1024 = x \)

\[2^x = 1024\]

\[x = 10\]

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *