Question 1: Factorize by identifying common factors

(i) \( 6x + 12 \)

\[= 6(x + 2)\]

(ii) \( 15y^2 + 20y \)

\[= 5y(3y + 4)\]

(iii) \( -12x^2 – 3x \)

\[= -3x(4x + 1)\]

(iv) \( 4a^2b + 8ab^2 \)

\[= 4ab(a + 2b)\]

(v) \( xy – 3x^2 + 2x \)

\[= x(y – 3x + 2)\]

(vi) \( 3a^2b – 9ab^2 + 15ab \)

\[= 3ab(a – 3b + 5)\]

Question 2: Factorize and represent pictorially

(i) \( 5x + 15 \)

\[ 5x + 15 = 5(x + 3) \]

(ii) \( x^2 + 4x + 3 \)

\[ x^2 + 4x + 3 = x^2 + 3x + x + 3 \]

\[ = x(x + 3) + 1(x + 3) \]

\[ = (x + 3)(x + 1) \]

(iii) \( x^2 + 6x + 8 \)

\[ x^2 + 6x + 8 = x^2 + 4x + 2x + 8 \]

\[ = x(x + 4) + 2(x + 4) \]

\[ = (x + 4)(x + 2) \]

(iv) \( x^2 + 4x + 4 \)

\[ x^2 + 4x + 4 = x^2 + 2x + 2x + 4 \]

\[ = x(x + 2) + 2(x + 2) \]

\[ = (x + 2)(x + 2) \]

\[ = (x + 2)^2 \]

Question 3: Factorize

(i) \( x^2 + x – 12 \)

\[ x^2 + x – 12 = x^2 + 4x – 3x – 12 \]

\[ = x(x + 4) – 3(x + 4) \]

\[ = (x + 4)(x – 3) \]

(ii) \( x^2 + 7x + 10 \)

\[ x^2 + 7x + 10 = x^2 + 5x + 2x + 10 \]

\[ = x(x + 5) + 2(x + 5) \]

\[ = (x + 5)(x + 2) \]

(iii) \( x^2 – 6x + 8 \)

\[ x^2 – 6x + 8 = x^2 – 4x – 2x + 8 \]

\[ = x(x – 4) – 2(x – 4) \]

\[ = (x – 4)(x – 2) \]

(iv) \( x^2 – x – 56 \)

\[ x^2 – x – 56 = x^2 – 8x + 7x – 56 \]

\[ = x(x – 8) + 7(x – 8) \]

\[ = (x – 8)(x + 7) \]

(v) \( x^2 – 10x – 24 \)

\[ x^2 – 10x – 24 = x^2 – 12x + 2x – 24 \]

\[ = x(x – 12) + 2(x – 12) \]

\[ = (x – 12)(x + 2) \]

(vi) \( y^2 + 4y – 12 \)

\[ y^2 + 4y – 12 = y^2 + 6y – 2y – 12 \]

\[ = y(y + 6) – 2(y + 6) \]

\[ = (y + 6)(y – 2) \]

(vii) \( y^2 + 13y + 36 \)

\[ y^2 + 13y + 36 = y^2 + 9y + 4y + 36 \]

\[ = y(y + 9) + 4(y + 9) \]

\[ = (y + 9)(y + 4) \]

(viii) \( x^2 – x – 2 \)

\[ x^2 – x – 2 = x^2 – 2x + x – 2 \]

\[ = x(x – 2) + 1(x – 2) \]

\[ = (x – 2)(x + 1) \]

Question 4: Factorize

(i) \( 2x^2 + 7x + 3 \)

\[ 2x^2 + 7x + 3 = 2x^2 + 6x + x + 3 \]

\[ = 2x(x + 3) + 1(x + 3) \]

\[ = (2x + 1)(x + 3) \]

(ii) \( 2x^2 + 11x + 15 \)

\[2x^2 + 11x + 15 = 2x^2 + 6x + 5x + 15 \]

\[ = 2x(x + 3) + 5(x + 3) \]

\[ = (2x + 5)(x + 3) \]

(iii) \( 4x^2 + 13x + 3 \)

\[ 4x^2 + 13x + 3 = 4x^2 + 12x + x + 3 \]

\[ = 4x(x + 3) + 1(x + 3) \]

\[ = (4x + 1)(x + 3) \]

(iv) \( 3x^2 + 5x + 2 \)

\[ 3x^2 + 5x + 2 = 3x^2 + 3x + 2x + 2 \]

\[ = 3x(x + 1) + 2(x + 1) \]

\[ = (3x + 2)(x + 1) \]

(v) \( 3y^2 – 11y + 6 \)

\[ 3y^2 – 11y + 6 = 3y^2 – 9y – 2y + 6 \]

\[ = 3y(y – 3) – 2(y – 3) \]

\[ = (3y – 2)(y – 3) \]

(vi) \( 2y^2 – 5y + 2 \)

\[ 2y^2 – 5y + 2 = 2y^2 – 4y – y + 2 \]

\[ = 2y(y – 2) – 1(y – 2) \]

\[ = (2y – 1)(y – 2) \]

(vii) \( 4z^2 – 11z + 6 \)

\[ 4z^2 – 11z + 6 = 4z^2 – 8z – 3z + 6 \]

\[ = 4z(z – 2) – 3(z – 2) \]

\[ = (4z – 3)(z – 2) \]

(viii) \( 6 + 7x – 3x^2 \)

\[ 6 + 7x – 3x^2 = -3x^2 + 7x + 6 \]

\[ = -3x^2 + 9x – 2x + 6 \]

\[ = -3x(x – 3) – 2(x – 3) \]

\[ = (-3x – 2)(x – 3) \]

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *